
OPEN FLOW :Innovating campus network
Prithvi krishna D#1, Shrihari M R*2, AnkithaGowda#3
#Department of CSE, Viesvesvaraya Technology university

SJCIT,chickballapur,karnataka ,INDIA
1dashagrantha.prithvi@gmail.com

3ankitagowda007@gmail.com
* Department of CSE, Viesvesvaraya Technology university

SJCIT,chickballapur,karnataka ,INDIA
2shrihari.mr@gmail.com

ABSTRACT
This whitepaper proposes OpenFlow: a way for researchers
to run experimental protocols in the networks they use ev-
ery day. OpenFlow is based on an Ethernet switch, with
an internal flow-table, and a standardized interface to add
and remove flow entries. Our goal is to encourage network-
ing vendors to add OpenFlow to their switch products for
deployment in college campus backbones and wiring closets.
We believe that OpenFlow is a pragmatic compromise: on
one hand, it allows researchers to run experiments on hetero-
geneous switches in a uniform way at line-rate and with high
port-density; while on the other hand, vendors do not need
to expose the internal workings of their switches. In addition
to allowing researchers to evaluate their ideas in real-world
traffic settings, OpenFlow could serve as a useful campus
component in proposed large-scale testbeds like GENI. Two
buildings at Stanford University will soon run OpenFlow
networks, using commercial Ethernet switches and routers.
We will work to encourage deployment at other schools; and
We encourage you to consider deploying OpenFlow in your
university network too.

Categories and Subject Descriptors
C.2 [Internetworking]: Routers

General Terms
Experimentation, Design

Keywords
Ethernet switch, virtualization, flow-based

1. THE NEED FOR PROGRAMMABLE

NETWORKS
Networks have become part of the critical infrastructure

of our businesses, homes and schools. This success has been
both a blessing and a curse for networking researchers; their
work is more relevant, but their chance of making an im-
pact is more remote. The reduction in real-world impact of
any given network innovation is because the enormous in-
stalled base of equipment and protocols, and the reluctance
to experiment with production traffic, which have created an
exceedingly high barrier to entry for new ideas. Today, there

is almost no practical way to experiment with new network
protocols (e.g., new routing protocols, or alternatives to IP)
in sufficiently realistic settings (e.g., at scale carrying real
traffic) to gain the confidence needed for their widespread
deployment. The result is that most new ideas from the net-
working research community go untried and untested; hence
the commonly held belief that the network infrastructure has
“ossified”.

Having recognized the problem, the networking commu-
nity is hard at work developing programmable networks,
such as GENI [1] a proposed nationwide research facility
for experimenting with new network architectures and dis-
tributed systems. These programmable networks call for
programmable switches and routers that (using virtualiza-
tion) can process packets for multiple isolated experimen-
tal networks simultaneously. For example, in GENI it is
envisaged that a researcher will be allocated a slice of re-
sources across the whole network, consisting of a portion
of network links, packet processing elements (e.g. routers)
and end-hosts; researchers program their slices to behave as
they wish. A slice could extend across the backbone, into
access networks, into college campuses, industrial research
labs, and include wiring closets, wireless networks, and sen-
sor networks.

Virtualized programmable networks could lower the bar-
rier to entry for new ideas, increasing the rate of innovation
in the network infrastructure. But the plans for nationwide
facilities are ambitious (and costly), and it will take years
for them to be deployed.

This whitepaper focuses on a shorter-term question closer
to home: As researchers, how can we run experiments in
our campus networks? If we can figure out how, we can
start soon and extend the technique to other campuses to
benefit the whole community.

To meet this challenge, several questions need answering,
including: In the early days, how will college network admin-
istrators get comfortable putting experimental equipment
(switches, routers, access points, etc.) into their network?
How will researchers control a portion of their local net-
work in a way that does not disrupt others who depend on
it? And exactly what functionality is needed in network
switches to enable experiments? Our goal here is to propose
a new switch feature that can help extend programmability
into the wiring closet of college campuses.

One approach - that we do not take - is to persuade

Prithvi krishna D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2070-2075

www.ijcsit.com 2070

Flow
Table

Secure
Channel

commercial “name-brand” equipment vendors to provide an
open, programmable, virtualized platform on their switches
and routers so that researchers can deploy new protocols,
while network administrators can take comfort that the
equipment is well supported. This outcome is very unlikely

Scope of OpenFlow Switch Specification

OpenFlow

Switch

Controller

in the short-term. Commercial switches and routers do not
typically provide an open software platform, let alone pro-
vide a means to virtualize either their hardware or software.
The practice of commercial networking is that the standard-

sw Secure
Channel

OpenFlow
Protocol

SSL
PC

ized external interfaces are narrow (i.e., just packet forward-
ing), and all of the switch’s internal flexibility is hidden. The
internals differ from vendor to vendor, with no standard
platform for researchers to experiment with new ideas. Fur-
ther, network equipment vendors are understandably ner-
vous about opening up interfaces inside their boxes: they
have spent years deploying and tuning fragile distributed
protocols and algorithms, and they fear that new experi-
ments will bring networks crashing down. And, of course,
open platforms lower the barrier-to-entry for new competi-
tors.

A few open software platforms already exist, but do not
have the performance or port-density we need. The simplest
example is a PC with several network interfaces and an op-
erating system. All well-known operating systems support
routing of packets between interfaces, and open-source im-
plementations of routing protocols exist (e.g., as part of the
Linux distribution, or from XORP [2]); and in most cases it
is possible to modify the operating system to process packets
in almost any manner (e.g., using Click [3]). The problem,
of course, is performance: A PC can neither support the
number of ports needed for a college wiring closet (a fanout
of 100+ ports is needed per box), nor the packet-processing
performance (wiring closet switches process over 100Gbits/s
of data, whereas a typical PC struggles to exceed 1Gbit/s;
and the gap between the two is widening).

Existing platforms with specialized hardware for line-rate
processing are not quite suitable for college wiring clos-
ets either. For example, an ATCA-based virtualized pro-
grammable router called the Supercharged PlanetLab Plat-
form [4] is under development at Washington University,
and can use network processors to process packets from
many interfaces simultaneously at line-rate. This approach
is promising in the long-term, but for the time being is tar-
geted at large switching centers and is too expensive for
widespread deployment in college wiring closets. At the
other extreme is NetFPGA [5] targeted for use in teaching
and research labs. NetFPGA is a low-cost PCI card with
a user-programmable FPGA for processing packets, and 4-
ports of Gigabit Ethernet. NetFPGA is limited to just four
network interfaces—insufficient for use in a wiring closet.

Thus, the commercial solutions are too closed and inflex-
ible, and the research solutions either have insufficient per-
formance or fanout, or are too expensive. It seems unlikely
that the research solutions, with their complete generality,
can overcome their performance or cost limitations. A more
promising approach is to compromise on generality and to
seek a degree of switch flexibility that is:

• Amenable to high-performance and low-cost imple-
mentations.

• Capable of supporting a broad range of research.

• Assured to isolate experimental traffic from production
traffic.

hw Flow
Table

Figure 1: Idealized OpenFlow Switch. The
Flow Table is controlled by a remote controller
via the Secure Channel.

• Consistent with vendors’ need for closed platforms.

This paper describes the OpenFlow Switch—a specifica-
tion that is an initial attempt to meet these four goals.

2. THE OPENFLOW SWITCH
The basic idea is simple: we exploit the fact that most

modern Ethernet switches and routers contain flow-tables
(typically built from TCAMs) that run at line-rate to im-
plement firewalls, NAT, QoS, and to collect statistics. While
each vendor’s flow-table is different, we’ve identified an in-
teresting common set of functions that run in many switches
and routers. OpenFlow exploits this common set of func-
tions.

OpenFlow provides an open protocol to program the flow-
table in different switches and routers. A network admin-
istrator can partition traffic into production and research
flows. Researchers can control their own flows - by choosing
the routes their packets follow and the processing they re-
ceive. In this way, researchers can try new routing protocols,
security models, addressing schemes, and even alternatives
to IP. On the same network, the production traffic is isolated
and processed in the same way as today.

The datapath of an OpenFlow Switch consists of a Flow
Table, and an action associated with each flow entry. The
set of actions supported by an OpenFlow Switch is exten-
sible, but below we describe a minimum requirement for
all switches. For high-performance and low-cost the data-
path must have a carefully prescribed degree of flexibility.
This means forgoing the ability to specify arbitrary handling
of each packet and seeking a more limited, but still useful,
range of actions. Therefore, later in the paper, define a basic
required set of actions for all OpenFlow switches.

An OpenFlow Switch consists of at least three parts: (1)
A Flow Table, with an action associated with each flow en-
try, to tell the switch how to process the flow, (2) A Secure
Channel that connects the switch to a remote control pro-
cess (called the controller), allowing commands and packets

Prithvi krishna D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2070-2075

www.ijcsit.com 2071

to be sent between a controller and the switch using (3) The
OpenFlow Protocol, which provides an open and standard
way for a controller to communicate with a switch. By speci-
fying a standard interface (the OpenFlow Protocol) through
which entries in the Flow Table can be defined externally,
the OpenFlow Switch avoids the need for researchers to pro-
gram the switch.

It is useful to categorize switches into dedicated OpenFlow
switches that do not support normal Layer 2 and Layer 3
processing, and OpenFlow-enabled general purpose com-
mercial Ethernet switches and routers, to which the Open-
Flow Protocol and interfaces have been added as a new fea-
ture.

Dedicated OpenFlow switches. A dedicated OpenFlow
Switch is a dumb datapath element that forwards packets
between ports, as defined by a remote control process. Fig-
ure 1 shows an example of an OpenFlow Switch.

In this context, flows are broadly defined, and are limited
only by the capabilities of the particular implementation of
the Flow Table. For example, a flow could be a TCP con-
nection, or all packets from a particular MAC address or
IP address, or all packets with the same VLAN tag, or all
packets from the same switch port. For experiments involv-
ing non-IPv4 packets, a flow could be defined as all packets
matching a specific (but non-standard) header.

Each flow-entry has a simple action associated with it;
the three basic ones (that all dedicated OpenFlow switches
must support) are:

1. Forward this flow’s packets to a given port (or ports).

This allows packets to be routed through the network.
In most switches this is expected to take place at line-
rate.

2. Encapsulate and forward this flow’s packets to a con-
troller. Packet is delivered to Secure Channel, where
it is encapsulated and sent to a controller. Typically
used for the first packet in a new flow, so a controller
can decide if the flow should be added to the Flow
Table. Or in some experiments, it could be used to
forward all packets to a controller for processing.

3. Drop this flow’s packets. Can be used for security, to
curb denial of service attacks, or to reduce spurious
broadcast discovery traffic from end-hosts.

An entry in the Flow-Table has three fields: (1) A packet

header that defines the flow, (2) The action, which defines
how the packets should be processed, and (3) Statistics,
which keep track of the number of packets and bytes for
each flow, and the time since the last packet matched the
flow (to help with the removal of inactive flows).

In the first generation “Type 0” switches, the flow header
is a 10-tuple shown in Table 1. A TCP flow could be spec-
ified by all ten fields, whereas an IP flow might not include
the transport ports in its definition. Each header field can
be a wildcard to allow for aggregation of flows, such as flows
in which only the VLAN ID is defined would apply to all
traffic on a particular VLAN.

The detailed requirements of an OpenFlow Switch are de-
fined by the OpenFlow Switch Specification [6].

OpenFlow-enabled switches. Some commercial
switches, routers and access points will be enhanced with

In VLAN Ethernet IP TCP

Port ID SA DA Type SA DA Proto Src Dst

Table 1: The header fields matched in a “Type 0”
OpenFlow switch.

the OpenFlow feature by adding the Flow Table, Secure
Channel and OpenFlow Protocol (we list some examples in
Section 5). Typically, the Flow Table will re-use existing
hardware, such as a TCAM; the Secure Channel and Proto-
col will be ported to run on the switch’s operating system.
Figure 2 shows a network of OpenFlow-enabled commercial
switches and access points. In this example, all the Flow
Tables are managed by the same controller; the OpenFlow
Protocol allows a switch to be controlled by two or more
controllers for increased performance or robustness.

Our goal is to enable experiments to take place in an ex-
isting production network alongside regular traffic and ap-
plications. Therefore, to win the confidence of network ad-
ministrators, OpenFlow-enabled switches must isolate ex-
perimental traffic (processed by the Flow Table) from pro-
duction traffic that is to be processed by the normal Layer 2
and Layer 3 pipeline of the switch. There are two ways to
achieve this separation. One is to add a fourth action:

4. Forward this flow’s packets through the switch’s nor-
mal processing pipeline.

The other is to define separate sets of VLANs for experi-
mental and production traffic. Both approaches allow nor-
mal production traffic that isn’t part of an experiment to be
processed in the usual way by the switch. All OpenFlow-
enabled switches are required to support one approach or
the other; some will support both.

Additional features. If a switch supports the header for-
mats and the four basic actions mentioned above (and de-
tailed in the OpenFlow Switch Specification), then we call it
a “Type 0” switch. We expect that many switches will sup-
port additional actions, for example to rewrite portions of
the packet header (e.g., for NAT, or to obfuscate addresses
on intermediate links), and to map packets to a priority
class. Likewise, some Flow Tables will be able to match on
arbitrary fields in the packet header, enabling experiments
with new non-IP protocols. As a particular set of features
emerges, we will define a “Type 1” switch.

Controllers. A controller adds and removes flow-entries
from the Flow Table on behalf of experiments. For example,
a static controller might be a simple application running
on a PC to statically establish flows to interconnect a set
of test computers for the duration of an experiment. In
this case the flows resemble VLANs in current networks—
providing a simple mechanism to isolate experimental traffic
from the production network. Viewed this way, OpenFlow
is a generalization of VLANs.

One can also imagine more sophisticated controllers that
dynamically add/remove flows as an experiment progresses.
In one usage model, a researcher might control the complete
network of OpenFlow Switches and be free to decide how all
flows are processed. A more sophisticated controller might
support multiple researchers, each with different accounts
and permissions, enabling them to run multiple indepen-
dent experiments on different sets of flows. Flows identified

Prithvi krishna D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2070-2075

www.ijcsit.com 2072

Flow
Table

Secure
Channel

Server room

OpenFlow

OpenFlow
Access Point

Controller

PC

OpenFlow

addressed in the context of the Ethane prototype, which
used simple flow switches and a central controller [7]. Pre-
liminary results suggested that an Ethane controller based
on a low-cost desktop PC could process over 10,000 new
flows per second — enough for a large college campus. Of
course, the rate at which new flows can be processed will de-
pend on the complexity of the processing required by the re-
searcher’s experiment. But it gives us confidence that mean-
ingful experiments can be run. Scalability and redundancy
are possible by making a controller (and the experiments)
stateless, allowing simple load-balancing over multiple sep-
arate devices.

OpenFlow

OpenFlow-enabled
Commercial Switch

Normal
Software Secure

Channel

Normal
Datapath

 Flow
Table

Figure 2: Example of a network of OpenFlow-
enabled commercial switches and routers.

as under the control of a particular researcher (e.g., by a
policy table running in a controller) could be delivered to a
researcher’s user-level control program which then decides if
a new flow-entry should be added to the network of switches.

3. USING OPENFLOW
As a simple example of how an OpenFlow Switch might be

used imagine that Amy (a researcher) invented Amy-OSPF
as a new routing protocol to replace OSPF. She wants to
try her protocol in a network of OpenFlow Switches, with-
out changing any end-host software. Amy-OSPF will run in
a controller; each time a new application flow starts Amy-
OSPF picks a route through a series of OpenFlow Switches,
and adds a flow- entry in each switch along the path. In her
experiment, Amy decides to use Amy-OSPF for the traffic
entering the OpenFlow network from her own desktop PC—
so she doesn’t disrupt the network for others. To do this,
she defines one flow to be all the traffic entering the Open-
Flow switch through the switch port her PC is connected to,
and adds a flow-entry with the action “Encapsulate and for-
ward all packets to a controller”. When her packets reach
a controller, her new protocol chooses a route and adds a
new flow-entry (for the application flow) to every switch
along the chosen path. When subsequent packets arrive at
a switch, they are processed quickly (and at line-rate) by
the Flow Table.

There are legitimate questions to ask about the perfor-
mance, reliability and scalability of a controller that dynam-
ically adds and removes flows as an experiment progresses:
Can such a centralized controller be fast enough to process
new flows and program the Flow Switches? What happens
when a controller fails? To some extent these questions were

3.1 Experiments in a Production Network
Chances are, Amy is testing her new protocol in a network

used by lots of other people. We therefore want the network
to have two additional properties:

1. Packets belonging to users other than Amy should be
routed using a standard and tested routing protocol
running in the switch or router from a “name-brand”
vendor.

2. Amy should only be able to add flow entries for her

traffic, or for any traffic her network administrator has
allowed her to control.

Property 1 is achieved by OpenFlow-enabled switches.

In Amy’s experiment, the default action for all
packets that don’t come from Amy’s PC could be to
forward them through the normal processing pipeline.
Amy’s own packets would be forwarded directly to the
outgoing port, without being processed by the normal
pipeline.

Property 2 depends on the controller. The controller
should be seen as a platform that enables researchers to im-
plement various experiments, and the restrictions of Prop-
erty 2 can be achieved with the appropriate use of permis-
sions or other ways to limit the powers of individual re-
searchers to control flow entries. The exact nature of these
permission-like mechanisms will depend on how the con-
troller is implemented. We expect that a variety of con-
trollers will emerge. As an example of a concrete realization
of a controller, some of the authors are working on a con-
troller called NOX as a follow-on to the Ethane work [8].
A quite different controller might emerge by extending the
GENI management software to OpenFlow networks.

3.2 More Examples
As with any experimental platform, the set of experiments

will exceed those we can think of up-front — most experi-
ments in OpenFlow networks are yet to be thought of. Here,
for illustration, we offer some examples of how OpenFlow-
enabled networks could be used to experiment with new net-
work applications and architectures.

Example 1: Network Management and Access Con-
trol. We’ll use Ethane as our first example [7] as it was
the research that inspired OpenFlow. In fact, an OpenFlow
Switch can be thought of as a generalization of Ethane’s
datapath switch. Ethane used a specific implementation of
a controller, suited for network management and control,
that manages the admittance and routing of flows. The ba-
sic idea of Ethane is to allow network managers to define a

Prithvi krishna D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2070-2075

www.ijcsit.com 2073

Flow
Table

Secure
Channel

network-wide policy in the central controller, which is en-
forced directly by making admission control decisions for
each new flow. A controller checks a new flow against a set
of rules, such as “Guests can communicate using HTTP, but
only via a web proxy” or “VoIP phones are not allowed to
communicate with laptops.” A controller associates pack-

OpenFlow-enabled
Commercial Switch

Controller

PC

ets with their senders by managing all the bindings between
names and addresses — it essentially takes over DNS, DHCP
and authenticates all users when they join, keeping track of
which switch port (or access point) they are connected to.
One could envisage an extension to Ethane in which a policy
dictates that particular flows are sent to a user’s process in
a controller, hence allowing researcher-specific processing to
be performed in the network.

Example 2: VLANs. OpenFlow can easily provide users
with their own isolated network, just as VLANs do. The
simplest approach is to statically declare a set of flows which
specify the ports accessible by traffic on a given VLAN ID.

Normal
Software

Normal
Datapath

Laboratory

Secure
Channel

Flow
Table

Traffic identified as coming from a single user (for example,
originating from specific switch ports or MAC addresses) is
tagged by the switches (via an action) with the appropriate
VLAN ID.

A more dynamic approach might use a controller to man-
age authentication of users and use the knowledge of the
users’ locations for tagging traffic at runtime.

Example 3: Mobile wireless VOIP clients. For this
example consider an experiment of a new call- handoff
mechanism for WiFi-enabled phones. In the experiment
VOIP clients establish a new connection over the OpenFlow-
enabled network. A controller is implemented to track the
location of clients, re-routing connections — by reprogram-
ming the Flow Tables — as users move through the network,
allowing seamless handoff from one access point to another.

Example 4: A non-IP network. So far, our examples
have assumed an IP network, but OpenFlow doesn’t require
packets to be of any one format — so long as the
Flow Table is able to match on the packet header. This
would allow experiments using new naming, addressing and
rout- ing schemes. There are several ways an OpenFlow-
enabled switch can support non-IP traffic. For example,
flows could be identified using their Ethernet header (MAC
src and dst addresses), a new EtherType value, or at the IP
level, by a new IP Version number. More generally, we
hope that fu- ture switches will allow a controller to create a
generic mask (offset + value + mask), allowing packets to
be processed in a researcher-specified way.

Example 5: Processing packets rather than flows.
The examples above are for experiments involving flows —
where a controller makes decisions when the flow starts.
There are, of course, interesting experiments to be per-
formed that require every packet to be processed. For ex-
ample, an intrusion detection system that inspects every
packet, an explicit congestion control mechanism, or when
modifying the contents of packets, such as when converting
packets from one protocol format to another.

There are two basic ways to process packets in an

NetFPGA

Figure 3: Example of processing packets through an
external line-rate packet-processing device, such as
a programmable NetFPGA router.

ing every packet to a controller. This has the advantage of
flexibility, at the cost of performance. It might provide a
useful way to test the functionality of a new protocol, but
is unlikely to be of much interest for deployment in a large
network.

The second way to process packets is to route them to
a programmable switch that does packet processing — for
example, a NetFPGA-based programmable router. The ad-
vantage is that the packets can be processed at line-rate in
a user-definable way; Figure 3 shows an example of how this
could be done, in which the OpenFlow-enabled switch op-
erates essentially as a patch-panel to allow the packets to
reach the NetFPGA. In some cases, the NetFPGA board (a
PCI board that plugs into a Linux PC) might be placed in
the wiring closet alongside the OpenFlow-enabled switch, or
(more likely) in a laboratory.

4. THE OPENFLOW CONSORTIUM
The OpenFlow Consortium aims to popularize OpenFlow

and maintain the OpenFlow Switch Specification. The Con-
sortium is a group of researchers and network administra-
tors at universities and colleges who believe their research
mission will be enhanced if OpenFlow-enabled switches are
installed in their network.

Membership is open and free for anyone at a school,
college, university, or government agency worldwide. The
OpenFlow Consortium welcomes individual members who
are not employed by companies that manufacture or sell
Ethernet switches, routers or wireless access points (because
we want to keep the consortium free of vendor influence). To
join, send email to join@OpenFlowSwitch.org.

1
OpenFlow-enabled network. First, and simplest, is to force The Consortium web-site contains the OpenFlow Switch
all of a flow’s packets to pass through a controller. To do
this, a controller doesn’t add a new flow entry into the Flow
Switch — it just allows the switch to default to forward-

Specification, a list of consortium members, and reference
implementations of OpenFlow switches.

1
http://www.OpenFlowSwitch.org

Prithvi krishna D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2070-2075

www.ijcsit.com 2074

Licensing Model: The OpenFlow Switch Specification
is free for all commercial and non-commercial use. (The ex-
act wording is on the web-site.) Commercial switches and
routers claiming to be “OpenFlow-enabled” must conform
to the requirements of an OpenFlow Type 0 Switch, as de-
fined in the OpenFlow Switch Specification. OpenFlow is a
trademark of Stanford University, and will be protected on
behalf of the Consortium.

5. DEPLOYING OPENFLOW SWITCHES
We believe there is an interesting market opportunity

for network equipment vendors to sell OpenFlow-enabled
switches to the research community. Every building in thou-
sands of colleges and universities contains wiring closets
with Ethernet switches and routers, and with wireless ac-
cess points spread across campus.

We are actively working with several switch and router
manufacturers who are adding the OpenFlow feature to their
products by implementing a Flow Table in existing hard-
ware; i.e. no hardware change is needed. The switches run
the Secure Channel software on their existing processor.

We have found network equipment vendors to be very
open to the idea of adding the OpenFlow feature. Most ven-
dors would like to support the research community without
having to expose the internal workings of their products.

We are deploying large OpenFlow networks in the Com-
puter Science and Electrical Engineering departments at
Stanford University. The networks in two buildings will
be replaced by switches running OpenFlow. Eventually, all
traffic will run over the OpenFlow network, with produc-
tion traffic and experimental traffic being isolated on dif-
ferent VLANs under the control of network administrators.
Researchers will control their own traffic, and be able to
add/remove flow-entries.

We also expect many different OpenFlow Switches to be
developed by the research community. The OpenFlow web-
site contains “Type 0” reference designs for several different
platforms: Linux (software), OpenWRT (software, for ac-
cess points), and NetFPGA (hardware, 4-ports of 1GE). As
more reference designs are created by the community we will
post them. We encourage developers to test their switches
against the reference designs.

All reference implementations of OpenFlow switches
posted on the web site will be open-source and free for com-

2 mercial and non-commercial use.

6. CONCLUSION
We believe that OpenFlow is a pragmatic compromise

that allows researchers to run experiments on heterogeneous
switches and routers in a uniform way, without the need for
vendors to expose the internal workings of their products,
or researchers to write vendor-specific control software.

If we are successful in deploying OpenFlow networks in
our campusses, we hope that OpenFlow will gradually catch-
on in other universities, increasing the number of networks
that support experiments. We hope that a new generation
of control software emerges, allowing researchers to re-use
controllers and experiments, and build on the work of oth-
ers. And over time, we hope that the islands of OpenFlow
networks at different universities will be interconnected by
tunnels and overlay networks, and perhaps by new Open-
Flow networks running in the backbone networks that con-
nect universities to each other.

REFERENCES
[1] Global Environment for Network Innovations. Web site

http://geni.net.
[2] Mark Handley Orion Hodson Eddie Kohler. “XORP:

An Open Platform for Network Research,” ACM
SIGCOMM Hot Topics in Networking, 2002.

[3] Eddie Kohler, Robert Morris, Benjie Chen, John
Jannotti, and M. Frans Kaashoek. “The Click modular
router,” ACM Transactions on Computer Systems
18(3), August 2000, pages 263-297.

[4] J. Turner, P. Crowley, J. Dehart, A. Freestone, B.
Heller, F. Kuhms, S. Kumar, J. Lockwood, J. Lu,
M.Wilson, C. Wiseman, D. Zar. “Supercharging
PlanetLab - High Performance, Multi-Application,
Overlay Network Platform,” ACM SIGCOMM ’07,
August 2007, Kyoto, Japan.

[5] NetFPGA: Programmable Networking Hardware. Web
site http://netfpga.org.

[6] The OpenFlow Switch Specification. Available at
http://OpenFlowSwitch.org.

[7] Martin Casado, Michael J. Freedman, Justin Pettit,
Jianying Luo, Nick McKeown, Scott Shenker. “Ethane:
Taking Control of the Enterprise,” ACM SIGCOMM
’07, August 2007, Kyoto, Japan.

[8] Natasha Gude, Teemu Koponen, Justin Pettit, Ben
Pfaff, Martin Casadao, Nick McKeown, Scott Shenker,
“NOX: Towards an Operating System for Networks,”
In submission. Also:
http://nicira.com/docs/nox-nodis.pdf.

2
Some platforms may limit the license terms of software

running on them. For example, a reference implementation
on Linux may be limited by the Linux GPL.

Prithvi krishna D et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2070-2075

www.ijcsit.com 2075

